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What is Node.js?

Why Node.js?

How did we Introduce Node.js in FINN?
Standardizing Node.js



Where is Node.js used?
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Enter a name for the repository:

Optionally enter a description of the repository:

Public or private:

Select the files and/or folders you wish to ignore: (Press <space> to select)
bower_components

e LoopBack




What is Node.js?

Server-Side JavaScript

Built on Google's V8

Created by Ryan Dahl in 2009
First version 2011

Written i C, C++ and JavaScript




Non-blocking 1/0

Blocking 1/O

1. const result = db.query('select x from table y');
2. doSomethingWithResult(result);
3. doSomethingWithOutResult();

Non-blocking 1/O

1 const result = db.query('select x from table y', (result) => {
2 doSomethingWithResult(result);

3. 1;

4 doSomethingWithOutResult();



What do a webapp typically do?
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It uses most of the
time waits for data!



Threads are expensive!

Threads have significant overhead
o Context switches
o Memory footprint
o CPUcycles

Why waste resources on waiting?




Node.js event-driven architecture

The main event loop Thread Pool

e “Single threaded”
e Non-blocking 1/0

Handles thousands of concurrent connections with minimal overhead (CPU/Memory) on a single process



Threads vs. Event loop

reqsisec " : memory in MB
| nginx nginx
10000 |/ n apache apache
' 30
8000
6000 ' 20
4000 — —
10
2000
0 0
500 1000 1600 2000 2500 3000 36800  concurrent 500 1000 1500 2000 2500 3000 3500 concurrent
connections connections
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Why Node.js?

Already use JavaScript in the browser
Mental switching

Simplicity

Modularity

Scaling Node.js
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We already use Node.js!

JavaScript in the browser Tools build upon the Node.js ecosystem

webpack

MODULE BUNDLER

The JavaScript Task Runner




Fewer mental context switches

e C(lient-side and server-side in same language
e Possible to reuse code

e Learning Node.js is easy
o Learning JavaScript is the hard part!






Simplicity!

Fast start-up time, typically less than 1 second.
We don't deal with threads in our code!

JSON (JavaScript Object Notation) support built in!
Great conventions

© npm install
0 npm run start

O npm run test

Few abstractions, close to “web

"|



Setting up a web server in Node.js

const http = require('http');

const server = http.createServer((req, res) => {
res.statusCode = 200;
res.setHeader('Content-Type', 'text/plain');
res.end('Hello World\n');

}).listen(3000);
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Node.js has a modular ecosystem!

Core Modules
File Modules

Packages




Scaling Node.js!

1. Multiple cores

2. Multiple servers

3. Perfect for cloud!




How did we introduce




Step 1: The Trojan Horsel!

Started using Node.js to process frontend
resources.

frontend-maven-plugin
e Downloads & installs Node and NPM

locally
e Correct Node & npm versions in all
build environments.




Step 2: FINN Technology Governance

e We also wanted to use it to build webapps

e Define it as an experiment in “FINN technology governance” model
o Use on a few new non-critical services (Unleash, FINN Hjgrner, Bedriftsprofiler)
o Needed to reimplement tools (already implemented for java)

e Set-up internal npm repository



Step 3: Node Performance Rescue Squad




Step 4: Learn From the Best

Node Performance Workshop
e How to write performant Node.js applications

e How to debug Node.js in production?
o Heap dumps
o Flame charts
o Remote debugging

e How to safely run Node.js applications in production

@ NODESOURCE™
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Step 6: Standardize



