
Introducing in

Ivar Conradi Østhus
@ivarconr

Trygve Lie
@trygve_lie

Agenda

➔ What is Node.js?
➔ Why Node.js?
➔ How did we Introduce Node.js in FINN?
➔ Standardizing Node.js

Where is Node.js used?

What is Node.js?

● Server-Side JavaScript
● Built on Google’s V8
● Created by Ryan Dahl in 2009
● First version 2011
● Written i C, C++ and JavaScript

Non-blocking I/O

1. const result = db.query('select x from table_y');

2. doSomethingWithResult(result);

3. doSomethingWithOutResult();

1. const result = db.query('select x from table_y', (result) => {

2. doSomethingWithResult(result);

3. });

4. doSomethingWithOutResult();

Blocking I/O

Non-blocking I/O

What do a webapp typically do?

service service service

It uses most of the
time waits for data!

Webapp

Threads are expensive!

Threads have significant overhead
○ Context switches
○ Memory footprint
○ CPU cycles

Why waste resources on waiting?

Node.js event-driven architecture

The main event loop

● “Single threaded”
● Non-blocking I/O

Handles thousands of concurrent connections with minimal overhead (CPU/Memory) on a single process

Threads vs. Event loop

https://blog.webfaction.com/2008/12/a-little-holiday-present-10000-reqssec-with-nginx-2/

Why Node.js?
❏ Already use JavaScript in the browser
❏ Mental switching
❏ Simplicity
❏ Modularity
❏ Scaling Node.js

We already use Node.js!

JavaScript in the browser Tools build upon the Node.js ecosystem

Fewer mental context switches

● Client-side and server-side in same language
● Possible to reuse code
● Learning Node.js is easy

○ Learning JavaScript is the hard part!

!==

Browser Node.js

● Fast start-up time, typically less than 1 second.
● We don’t deal with threads in our code!
● JSON (JavaScript Object Notation) support built in!
● Great conventions

○ npm install
○ npm run start
○ npm run test

● Few abstractions, close to “web”!

Simplicity!

Setting up a web server in Node.js

1. const http = require('http');

2.

3. const server = http.createServer((req, res) => {

4. res.statusCode = 200;

5. res.setHeader('Content-Type', 'text/plain');

6. res.end('Hello World\n');

7. }).listen(3000);

Node.js has a modular ecosystem!

Core Modules

File Modules

Packages

Scaling Node.js!

1. Multiple cores 2. Multiple servers 3. Perfect for cloud!

How did we introduce ?

Step 1: The Trojan Horse!

Started using Node.js to process frontend
resources.

frontend-maven-plugin
● Downloads & installs Node and NPM

locally
● Correct Node & npm versions in all

build environments.

Step 2: FINN Technology Governance

● We also wanted to use it to build webapps
● Define it as an experiment in “FINN technology governance” model

○ Use on a few new non-critical services (Unleash, FINN Hjørner, Bedriftsprofiler)
○ Needed to reimplement tools (already implemented for java)

● Set-up internal npm repository

Step 3: Node Performance Rescue Squad

Step 4: Learn From the Best

Node Performance Workshop
● How to write performant Node.js applications
● How to debug Node.js in production?

○ Heap dumps
○ Flame charts
○ Remote debugging

● How to safely run Node.js applications in production

Step 5: Educate the Organisation

Step 6: Standardize

