Ivar Conradi @sthus
@ivarconr

Trygve Lie
@L [\CRIE

V20 2

What is Node.js?

Why Node.js?

How did we Introduce Node.js in FINN?
Standardizing Node.js

Where is Node.js used?

: EXOress

nedeo

Terminal

TTITTRRTINT

L]
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

Enter a name for the repository:

Optionally enter a description of the repository:

Public or private:

Select the files and/or folders you wish to ignore: (Press <space> to select)
bower_components

e LoopBack

What is Node.js?

Server-Side JavaScript

Built on Google's V8

Created by Ryan Dahl in 2009
First version 2011

Written i C, C++ and JavaScript

Non-blocking 1/0

Blocking 1/O

1. const result = db.query('select x from table y');
2. doSomethingWithResult(result);
3. doSomethingWithOutResult();

Non-blocking 1/O

1 const result = db.query('select x from table y', (result) => {
2 doSomethingWithResult(result);

3. 1;

4 doSomethingWithOutResult();

What do a webapp typically do?

R R (R (R (= (=D (=R (=)

service

(| ST

service

service

It uses most of the
time waits for data!

Threads are expensive!

Threads have significant overhead
o Context switches
o Memory footprint
o CPUcycles

Why waste resources on waiting?

Node.js event-driven architecture

The main event loop Thread Pool

e “Single threaded”
e Non-blocking 1/0

Handles thousands of concurrent connections with minimal overhead (CPU/Memory) on a single process

Threads vs. Event loop

reqsisec " : memory in MB
| nginx nginx
10000 |/ n apache apache
' 30
8000
6000 ' 20
4000 — —
10
2000
0 0
500 1000 1600 2000 2500 3000 36800 concurrent 500 1000 1500 2000 2500 3000 3500 concurrent
connections connections

https://blog.webfaction.com/2008/12/a-little-holiday-present-10000-regssec-with-nginx-2/

Why Node.js?

Already use JavaScript in the browser
Mental switching

Simplicity

Modularity

Scaling Node.js

(M Wy Ny

We already use Node.js!

JavaScript in the browser Tools build upon the Node.js ecosystem

webpack

MODULE BUNDLER

The JavaScript Task Runner

Fewer mental context switches

e C(lient-side and server-side in same language
e Possible to reuse code

e Learning Node.js is easy
o Learning JavaScript is the hard part!

Simplicity!

Fast start-up time, typically less than 1 second.
We don't deal with threads in our code!

JSON (JavaScript Object Notation) support built in!
Great conventions

© npm install
0 npm run start

O npm run test

Few abstractions, close to “web

"|

Setting up a web server in Node.js

const http = require('http');

const server = http.createServer((req, res) => {
res.statusCode = 200;
res.setHeader('Content-Type', 'text/plain');
res.end('Hello World\n');

}).listen(3000);

N ool bW N R

Node.js has a modular ecosystem!

Core Modules
File Modules

Packages

Scaling Node.js!

1. Multiple cores

2. Multiple servers

3. Perfect for cloud!

How did we introduce

Step 1: The Trojan Horsel!

Started using Node.js to process frontend
resources.

frontend-maven-plugin
e Downloads & installs Node and NPM

locally
e Correct Node & npm versions in all
build environments.

Step 2: FINN Technology Governance

e We also wanted to use it to build webapps

e Define it as an experiment in “FINN technology governance” model
o Use on a few new non-critical services (Unleash, FINN Hjgrner, Bedriftsprofiler)
o Needed to reimplement tools (already implemented for java)

e Set-up internal npm repository

Step 3: Node Performance Rescue Squad

Step 4: Learn From the Best

Node Performance Workshop
e How to write performant Node.js applications

e How to debug Node.js in production?
o Heap dumps
o Flame charts
o Remote debugging

e How to safely run Node.js applications in production

@ NODESOURCE™

(]
2
ki
T
i}
=

Step 6: Standardize

